1.三垂线就是所谓的垂直于斜线就垂直于垂线,垂直于垂线就垂直于斜线,而我只用了一个定理来代替了它:垂直于平面内两条相交直线,哪么就垂直于该平面。
2.可以说,三垂线只是属于这个定理的一部分而已,而有些时候根本没发用,因为你用三垂线老是要找什么所谓的斜线了,垂线了,很麻烦,而用:垂直于平面内两条相交直线,哪么就垂直于该平面,垂直于该平面就垂直于该平面内所有直线。
3.就已经足够了。
4. 过平面a上一点B作AB垂直于平面a,在过点A作平面a的斜线交平面a于C点,连接BC,然后过C点在a平面上作直线CD,若直线CD垂直于斜线AC,哪么CD就垂直于BC,同理若直线CD垂直于BC哪么,CD就垂直于AC。
说明
(1)线射垂直(平面问题)⇒线斜垂直(空间问题);
(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理;
(3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。
(4)直线a与PO可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
(6)可用来解决异面直线所成的角和二面角的平面角等问题。